Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| A.Ali, A. Ilchev, V. ivanova, Hr. Kuneva, P. yaneva and B. Zlatanov, Modeling the Tripodal Mobile Market using Response Functions Instead of Payoffs Maximization, Vol 13, iss1 (2025), 20 ñòð. doi: 10.3390/math13010171, ISSN: 2227-7390 (Web of Science, IF=2.3, Q1; SCOPUS, SJR=0.475, Q2) |
28.03.2025 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
Èçâåñòèå
| Äîêëàäè
| A. Ali, Application of the fixed point theorem to solving matrix equations and systems of matrix equations, MATTEX-2024, ØÓ, 24-26.10.2024 ã., Øóìåí |
08.11.2024 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
Èçâåñòèå
| Äîêëàäè
| A. Ali, Application of the Bhaskar-Lakshmikantham fixed point theorem to solving matrix equations and systems of matrix equations, Ñåìèíàð íà åêèïà ïî ÄÓÅêîÑ, ÔÌÈ, ÏÓ \"Ïàèñèé Õèëåíäàðñêè\", 02-04.10.2024 ã., Ïàñìïîðîâî |
08.11.2024 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
 ñáîðíèê
| Äîêëàäè
| Àëè, À., Çà ìàòðè÷íîòî óðàâíåíèå (X-A^*XA-B^*X^{-1}B=I), MATTEX 2018, 25-28 Îêòîìâðè, 2018 |
07.11.2024 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
 ñáîðíèê
| Äîêëàäè
| Àëè, À., Åäèí èòåðàöèîíåí ìåòîä çà ìàòðè÷íîòî óðàâíåíèå (X+ A^*X^{-1}A- B^*X^{-1}B = I), ÌÀÒÒÅÕ 2016, 11 - 13 ÍÎÅÌÂÐÈ 2016ã. |
07.11.2024 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
 íàó÷íî ñïèñàíèå
| Äîêëàäè
| Ali, A.A., V.I. Hasanov, On some sufficient conditions for the existence of a positive definite solution of the matrix equation (X+ A^*X^{-1}A- B^*X^{-1}B = Q), 41st International Conference “Applications of Mathematics in Engineering and Economics” AMEE ’15, 8–13 June 2015
Sozopol, Bulgaria |
07.11.2024 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
Ñ èìïàêò ôàêòîð
| Ñòóäèè
| A. Ali, C. Dinkova, A. Ilchev, B. Zlatanov, Bhaskar-Lakshmikantham fixed point theorem vs Ran-Reunrings one and some possible generalizations and applications in matrix equations, AIMS Mathematics, 9(8), 21890-21917, (2024), doi: 10.3934/math.20241064, ISSN: 2473-6988, (Web of Science, IF=1.8, Q1; SCOPUS, SJR=0.456, Q2) |
07.11.2024 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
Äðóãè
| Äèñåðòàöèè
| ÈÒÅÐÀÖÈÎÍÍÈ ÌÅÒÎÄÈ ÇÀ ÐÅØÀÂÀÍÅ ÍÀ ÐÀÖÈÎÍÀËÍÈ ÌÀÒÐÈ×ÍÈ ÓÐÀÂÍÅÍÈß |
28.03.2022 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| Ali, A., Hasanov, V., An iterative method for solving the matrix equation X-A^* XA-B^* X^{-1} B= I , Mathematical and Software Engineering, 6 (1), 2020, pp. 1-6 |
03.10.2020 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| Àëè, À., Çà ìàòðè÷íîòî óðàâíåíèå \(X-A^*XA-B^*X^{-1}B=I\), MATTEX 2018, Ñáîðíèê íàó÷íè òðóäîâå, Òîì 1, (2018), ññ.161-166, ISSN: 1314-3921 |
06.03.2020 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| Hasanov, V.I., Ali, A.A., On convergence of three iterative methods for solving of the matrix equation \(X+A^*X^{-1}A+B^*X^{-1}B=Q\), Computational and Applied Mathematics, 36 (2017), pp. 79-87. ISSN:0101-8205, WoS, Scopus, MathSciNet [MR3611592], Zentralblatt MATH [Zbl 1359.65047] |
06.03.2020 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| Àëè, À., Åäèí èòåðàöèîíåí ìåòîä çà ìàòðè÷íîòî óðàâíåíèå \(X+ A^*X^{-1}A- B^*X^{-1}B = I\), ÌÀÒÒÅÕ 2016, Ñáîðíèê íàó÷íè òðóäîâå, Òîì 1, (2016), ññ. 74-80, ISSN: 1314-3921 |
06.03.2020 |
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| Ali, A.A., V.I. Hasanov, On some sufficient conditions for the existence of a positive definite solution of the matrix equation \(X+ A^*X^{-1}A- B^*X^{-1}B = Q\), AIP Conference Proceedings, Volume 1690, 060001, (2015). ISSN:0094-243X, WoS(Conference Proceedings Citation Index- Science), Scopus |
06.03.2020 |