print
Òúðñè Îáùà ñòàòèñòèêà Ïðåïîäàâàòåëè
string(3) "662"
ÔÌÈ / ÀËÃÅÁÐÀ È ÃÅÎÌÅÒÐÈß / Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè
Ñòðàíèöà: 1/1,îáùî çàïèñè:13
Àâòîð Òèï Êàòåãîðèÿ Ïóáëèêàöèÿ Ðåäàêöèÿ
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè Ñ èìïàêò ôàêòîð Ñòàòèè A.Ali, A. Ilchev, V. ivanova, Hr. Kuneva, P. yaneva and B. Zlatanov, Modeling the Tripodal Mobile Market using Response Functions Instead of Payoffs Maximization, Vol 13, iss1 (2025), 20 ñòð. doi: 10.3390/math13010171, ISSN: 2227-7390 (Web of Science, IF=2.3, Q1; SCOPUS, SJR=0.475, Q2) 28.03.2025
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè Èçâåñòèå Äîêëàäè A. Ali, Application of the fixed point theorem to solving matrix equations and systems of matrix equations, MATTEX-2024, ØÓ, 24-26.10.2024 ã., Øóìåí 08.11.2024
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè Èçâåñòèå Äîêëàäè A. Ali, Application of the Bhaskar-Lakshmikantham fixed point theorem to solving matrix equations and systems of matrix equations, Ñåìèíàð íà åêèïà ïî ÄÓÅêîÑ, ÔÌÈ, ÏÓ \"Ïàèñèé Õèëåíäàðñêè\", 02-04.10.2024 ã., Ïàñìïîðîâî 08.11.2024
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè  ñáîðíèê Äîêëàäè Àëè, À., Çà ìàòðè÷íîòî óðàâíåíèå (X-A^*XA-B^*X^{-1}B=I), MATTEX 2018, 25-28 Îêòîìâðè, 2018 07.11.2024
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè  ñáîðíèê Äîêëàäè Àëè, À., Åäèí èòåðàöèîíåí ìåòîä çà ìàòðè÷íîòî óðàâíåíèå (X+ A^*X^{-1}A- B^*X^{-1}B = I), ÌÀÒÒÅÕ 2016, 11 - 13 ÍÎÅÌÂÐÈ 2016ã. 07.11.2024
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè  íàó÷íî ñïèñàíèå Äîêëàäè Ali, A.A., V.I. Hasanov, On some sufficient conditions for the existence of a positive definite solution of the matrix equation (X+ A^*X^{-1}A- B^*X^{-1}B = Q), 41st International Conference “Applications of Mathematics in Engineering and Economics” AMEE ’15, 8–13 June 2015 Sozopol, Bulgaria 07.11.2024
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè Ñ èìïàêò ôàêòîð Ñòóäèè A. Ali, C. Dinkova, A. Ilchev, B. Zlatanov, Bhaskar-Lakshmikantham fixed point theorem vs Ran-Reunrings one and some possible generalizations and applications in matrix equations, AIMS Mathematics, 9(8), 21890-21917, (2024), doi: 10.3934/math.20241064, ISSN: 2473-6988, (Web of Science, IF=1.8, Q1; SCOPUS, SJR=0.456, Q2) 07.11.2024
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè Äðóãè Äèñåðòàöèè ÈÒÅÐÀÖÈÎÍÍÈ ÌÅÒÎÄÈ ÇÀ ÐÅØÀÂÀÍÅ ÍÀ ÐÀÖÈÎÍÀËÍÈ ÌÀÒÐÈ×ÍÈ ÓÐÀÂÍÅÍÈß 28.03.2022
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè  íàó÷íî ñïèñàíèå Ñòàòèè Ali, A., Hasanov, V., An iterative method for solving the matrix equation X-A^* XA-B^* X^{-1} B= I , Mathematical and Software Engineering, 6 (1), 2020, pp. 1-6 03.10.2020
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè  íàó÷íî ñïèñàíèå Ñòàòèè Àëè, À., Çà ìàòðè÷íîòî óðàâíåíèå \(X-A^*XA-B^*X^{-1}B=I\), MATTEX 2018, Ñáîðíèê íàó÷íè òðóäîâå, Òîì 1, (2018), ññ.161-166, ISSN: 1314-3921 06.03.2020
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè Ñ èìïàêò ôàêòîð Ñòàòèè Hasanov, V.I., Ali, A.A., On convergence of three iterative methods for solving of the matrix equation \(X+A^*X^{-1}A+B^*X^{-1}B=Q\), Computational and Applied Mathematics, 36 (2017), pp. 79-87. ISSN:0101-8205, WoS, Scopus, MathSciNet [MR3611592], Zentralblatt MATH [Zbl 1359.65047] 06.03.2020
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè  íàó÷íî ñïèñàíèå Ñòàòèè Àëè, À., Åäèí èòåðàöèîíåí ìåòîä çà ìàòðè÷íîòî óðàâíåíèå \(X+ A^*X^{-1}A- B^*X^{-1}B = I\), ÌÀÒÒÅÕ 2016, Ñáîðíèê íàó÷íè òðóäîâå, Òîì 1, (2016), ññ. 74-80, ISSN: 1314-3921 06.03.2020
Ãë. àñ. ä-ð . Àéíóð Àáäóëîâà Àëè Ñ èìïàêò ôàêòîð Ñòàòèè Ali, A.A., V.I. Hasanov, On some sufficient conditions for the existence of a positive definite solution of the matrix equation \(X+ A^*X^{-1}A- B^*X^{-1}B = Q\), AIP Conference Proceedings, Volume 1690, 060001, (2015). ISSN:0094-243X, WoS(Conference Proceedings Citation Index- Science), Scopus 06.03.2020
Ñòðàíèöà2: 1/1,îáùî çàïèñè:13