print
Òúðñè Îáùà ñòàòèñòèêà Ïðåïîäàâàòåëè
string(3) "260"
ÔÌÈ / ÀËÃÅÁÐÀ È ÃÅÎÌÅÒÐÈß / Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
Ñòðàíèöà: 1/3,îáùî çàïèñè:126
íàïðåä
Àâòîð Òèï Êàòåãîðèÿ Ïóáëèêàöèÿ Ðåäàêöèÿ
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ãîäèøíèê Ñòàòèè IVO M. MICHAILOV, IVAN S. IVANOV, UNRAMIFIED COHOMOLOGY AND NOETHER’S PROBLEM, Annual of Konstantin Preslavsky University of Shumen vol. XX C, 2019, pp. 3 - 11. 22.01.2023
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ãîäèøíèê Ñòàòèè IVO M. MICHAILOV, IVAYLO DIMITROV, IVAN IVANOV, ON ISOCLINISM OF CERTAIN NILPOTENCY CLASS 2 p-GROUPS, Annual of Konstantin Preslavsky University of Shumen vol. XXI C, 2020, pp. 3 - 10. 19.01.2023
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ãîäèøíèê Äîêëàäè I. Michailov, I. Ivanov, I. Dimitrov, CLASSIFICATION OF THE p -GROUPS G HAVING A NORMAL ABELIAN SUBGROUP H OF INDEX p SUCH THAT Gp=1, íàó÷íà êîíôåðåíöèÿ íà Ðóñåíñêè óíèâåðñèòåò, 24-26 îêòîìâðè 2019. 04.10.2022
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ãîäèøíèê Ñòàòèè I. Michailov, I. Ivanov, I. Dimitrov, CLASSIFICATION OF THE p -GROUPS G HAVING A NORMAL ABELIAN SUBGROUP H OF INDEX p SUCH THAT Gp={1}, Proceedings of University of Ruse, Vol 58, Bulgaria, 2019, ð 10-16. 04.10.2022
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè Ivo M. Michailov, Ivaylo Dimitrov, Ivan Ivanov, NOETHER’S PROBLEM FOR ABELIAN EXTENSIONS OF CYCLIC p-GROUPS OF NILPOTENCY CLASS 2, Compt. Rend. de’ l Academie bulgarie des Sciences, 2022, 75, ¹ 3, pp. 323-330, DOI:10.7546/CRABS.2022.03.01. 04.10.2022
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ãîäèøíèê Ñòàòèè IVO M. MICHAILOV, IVAYLO DIMITROV, IVAN IVANOV, ON THE EMBEDDING PROBLEM OF CENTRAL CYCLIC EXTENSIONS OF ABELIAN GROUPS, Annual of Konstantin Preslavsky University of Shumen vol. XXII C, 2021, pp. 13 - 21, https://doi.org/10.46687/ZFTQ1864. 04.10.2022
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ãîäèøíèê Ñòàòèè I. Michailov, I. Ivanov, ON p-GROUPS HAVING A NORMALELEMENTARY ABELIAN SUBGROUP OF INDEX p, Annual of Konstantin Preslavsky University of Shumen Faculty of Mathematics and Informatics , vol. XIX C, 2018, pp. 21- 26. 18.05.2021
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ãîäèøíèê Ñòàòèè I. Michailov, I. Ivanov, S. Vladimirova, F. Aleksandrova, On bigger primes. Ãîäèøíèê íà ÔÌÈ, òîì XVIII C, ISSN 1311-834X, p. 15-23 (2017). 08.03.2021
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, Bogomolov multipliers for unitriangular groups, C. R. Acad. Bulg. Sci. 68 ¹ 6 (2015), 689–696. 09.04.2019
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Âòîðî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Bogomolov multipliers for unitriangular groups, C. R. Acad. Bulg. Sci. 68 (2015), 689–696. Öèòèðàíà â: Jezernik, U., & Moravec, P. (2018). Commutativity preserving extensions of groups. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148(03), 575–592. 24.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Äðóãè Öèòèðàíèÿ Òðåòî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Bogomolov multipliers for unitriangular groups, C. R. Acad. Bulg. Sci. 68 (2015), 689–696. Öèòèðàíà â: Jezernik, U.,UNIVERSAL COMMUTATOR RELATIONSð Doctoral thesis, Ljubljana University, 2016. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Ïúðâî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Noether’s problem for some groups of order 16n, Acta Arithmetica, 143, 2010, 277-290. Öèòèðàíà â: SHARIFI, Hesam & Reza DARAFSHEH, Mohammad. (2017). On tetravalent normal edge-transitive Cayley graphs on the modular group. TURKISH JOURNAL OF MATHEMATICS. 41. 1308-1312. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Äðóãè Öèòèðàíèÿ Âòîðî öèòèðàíå íà ñòàòèÿòà: I.M. Michailov, Noether’s problem for abelian extensions of cyclic p-groups, Pacific J. Math. 270 (2014) 167–189. Öèòèðàíà â: Sergey Gorchinskiy, Constantin Shramov, Unramified Brauer Group and Its Applications (Translations of Mathematical Monographs), Amer Mathematical Society (August 27, 2018). 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Ïúðâî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Induced orthogonal representations of Galois groups, Journal of Algebra, 322, ¹10, 2009, p. 3713-3732.Öèòèðàíà â: Chebolu, S., Minac, J., & Schultz, A. (2016). Galois $p$-groups and Galois modules. Rocky Mountain Journal of Mathematics, 46(5), 1405–1446. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Ïåòî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Four non-abelian groups of order p4 as Galois groups, Journal of Algebra 307, ¹ 1, 2007, 287-299. Öèòèðàíà â: Chebolu, S., Minac, J., & Schultz, A. (2016). Galois $p$-groups and Galois modules. Rocky Mountain Journal of Mathematics, 46(5), 1405–1446. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Âòîðî öèòèðàíå íà ñòàòèÿòà: I. Michailov, N. Ziapkov, On realizability of p-groups as Galois groups, Serdica Mathematical Journal, 37 (2011), 173-210. Öèòèðàíà â: Minac, J., & Tan, N. D. (2017). Construction of unipotent Galois extensions and Massey products. Advances in Mathematics, 304, 1021–1054. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Ïúðâî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Galois realizability of groups of orders p5 and p6, Central European Journal of Mathematics, 11 (5), 2013, p. 910-923. Öèòèðàíà â: Minac, J., & Tan, N. D. (2017). Construction of unipotent Galois extensions and Massey products. Advances in Mathematics, 304, 1021–1054. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ ×åòâúðòî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Four non-abelian groups of order p4 as Galois groups, Journal of Algebra 307, ¹ 1, 2007, 287-299. Öèòèðàíà â: Minac, J., & Tan, N. D. (2017). Construction of unipotent Galois extensions and Massey products. Advances in Mathematics, 304, 1021–1054. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Ïúðâî öèòèðàíå íà ñòàòèÿòà: I.M. Michailov, Noether’s problem for abelian extensions of cyclic p-groups, Pacific J. Math. 270 (2014) 167–189. Öèòèðàíà â: H. Chu, A. Hoshi, S.-J. Hu, M.-C. Kang, Noether’s problem for groups of order 243, Journal of Algebra 442 (2015), 233–259. 22.11.2018
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Öèòèðàíèÿ Âòîðî öèòèðàíå íà ñòàòèÿòà: M. Kang, I. Michailov, Jian Zhou, Noether’s problem for the groups with a cyclic subgroup of index 4, Transformation groups, 17 (4), 2012, p. 1037-1058. Öèòèðàíà â: A. Hoshi, BIRATIONAL CLASSIFICATION OF FIELDS OF INVARIANTS FOR GROUPS OF ORDER 128, Journal of Algebra, 445 (2016), 394-432. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ñáîðíèê Äîêëàäè I. Michailov, I. Ivanov, Bogomolov multipliers for some p-groups of nilpotency class 2 with 6 generators, äîêëàä íà íàó÷íà êîíôåðåíöèÿ "ÌÀÒÒÅÕ”, Øóìåíñêè Óíèâåðñèòåò, 2016. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ñáîðíèê Ñòàòèè È. Ìèõàéëîâ, Í. Çÿïêîâ, Íÿêîè ñâîéñòâà íà àëãåáðèòå íà Ãàëîà, ñâúðçàíè ñúñ çàäà÷èòå çà âëîæèìîñò íà ïîëåòà, Äîêëàäè: Ìàòåìàòèêà è èíôîðìàòèêà: I ÷àñò, Þáèëåéíà íàó÷íà êîíôåðåíöèÿ “25 ãîäèíè ØÓ “Åïèñêîï Ê. Ïðåñëàâñêè”, 1996, ñòð. 29-32. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, N. Ziapkov, Embedding obstructions for the generalized quaternion group , Journal of Algebra 226, ¹ 1, 2000, 375-389. PDF ScienceDirect. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, N. Ziapkov, Attendant embedding problems , C.R. de’ l Academie bulgarie des Sciences, 2000, 53, ¹ 7, 9-12. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, N. Ziapkov, On equivalent embedding problems , C.R. de’ l Academie bulgarie des Sciences, 2000, 53, ¹ 8, 9-12. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, Embedding obstructions for the dihedral, semidihedral and quaternion 2 – groups, Journal of Algebra, 2001, 245 (2001), 355-369. PDF ScienceDirect. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  íàó÷íî ñïèñàíèå Ñòàòèè I. Michailov, N. Ziapkov, Embedding problems with Galois groups of order 16, Mathematica Balkanica, New Series, 15 (2001), Fasc. 1-2, 99-108. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ñáîðíèê Ñòàòèè È. Ìèõàéëîâ, Í. Çÿïêîâ, Çàäà÷è çà âëîæèìîñò ñ îáîáùåíàòà êâàòåðíèîííà ãðóïà, Äîêëàäè íà Þáèëåéíà íàó÷íà êîíôåðåíöèÿ “30 ãîäèíè ØÓ “Åïèñêîï Ê.Ïðåñëàâñêè”, ÔÌÈ, Øóìåí, 2002, ñòð. 3-7. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  íàó÷íî ñïèñàíèå Ñòàòèè I. Michailov, Some groups of orders 8 and 16 as Galois groups over Q, Mathematica Balkanica, New Series, 17 (2003), Fasc. 1-2, 155-170. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ñáîðíèê Ñòàòèè È. Ìèõàéëîâ, Í. Çÿïêîâ, Íÿêîè åêâèâàëåíòíè çàäà÷è çà âëîæèìîñò â òåîðèÿòà çà âëîæèìîñò íà ïîëåòà, Ñáîðíèê íàó÷íè òðóäîâå, ïîñâåòåí íà 100 ã. îò ðîæäåíèåòî íà Äæ. Àòàíàñîâ,Øóìåí, 4-5.12., Óíèâåðñèòåòñêî èçäàòåëñòâî “Åï. Ê. Ïðåñëàâñêè”, ò. I, Øóìåí, 2004, ñòð. 78-81. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  íàó÷íî ñïèñàíèå Ñòàòèè I. Michailov, Some groups of orders 8 and 16 as Galois groups over the p-adic number field, Mathematica Balkanica, New Series, 19 (2005), Fasc.3-4, 367-383. PDF 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ñáîðíèê Ñòàòèè I. Michailov, I. Ivanov, Bogomolov multipliers for some p-groups of nilpotency class 2 with 6 generators, ñáîðíèê îò íàó÷íè òðóäîâå îò íàó÷íà êîíôåðåíöèÿ "ÌÀÒÒÅÕ”, Øóìåíñêè Óíèâåðñèòåò, 2016, p. 31-35. 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, Bogomolov multipliers for some p-groups of nilpotency class 2, Acta Mathematica Sinica, English Series, May 2016, Volume 32, Issue 5, pp 541-552 25.11.2016
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ðåôåðèðàíè èçäàíèÿ Ñòàòèè I. Michailov, Quaternion extensions of order 16, Serdica Mathematical Journal, 31, ¹ 3, 2005, 217-228. PDF 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, Four non-abelian groups of order p4 as Galois groups, Journal of Algebra 307, ¹ 1, 2007, 287-299. PDF ScienceDirect. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ðåôåðèðàíè èçäàíèÿ Ñòàòèè I. Michailov, Groups of order 32 as Galois groups, Serdica Mathematical Journal, 34, ¹ 1, 2007, p. 1-34. PDF 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ðåôåðèðàíè èçäàíèÿ Ñòàòèè I. Michailov, Embedding obstructions for the modular and cyclic 2-groups, Mathematica Balkanica, New Series, 21 (2007), Fasc. 1-2, 31-50. PDF 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Â ðåôåðèðàíè èçäàíèÿ Ñòàòèè I. Michailov, N. Ziapkov, The Inverse Problem Of Galois Theory, Proceedings of the 37th spring conference of the Union of Bulgarian Mathematicians in Borovets, 2008, 17-28.PDF 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, Induced orthogonal representations of Galois groups, Journal of Algebra, 322, ¹10, 2009, p. 3713-3732.PDF ScienceDirect. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, Exact sequences in the theory of orthogonal representations of groups, Compt. Rend. de’ l Academie bulgarie des Sciences, 2009, 62, ¹ 9, pp. 1057-1062. PDF 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, Noether’s problem for some groups of order 16n, Acta Arithmetica, 143, 2010, 277-290. PDF Impan. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Äðóãè Äîêëàäè I. Michailov, I. Ivanov, A. Aleksandrova, G. Ilianova, Algorithmic determination of isoclinism for 6-generator groups of nilpotency class 2, íàó÷íà êîíôåðåíöèÿ íà Ðóñåíñêè óíèâåðñèòåò, 9-10 îêòîìâðè 2015. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Äðóãè Äîêëàäè I. Michailov, I. Ivanov, N. Ziapkov, Algorithmic generation of isoclinism classes for 4-generator groups of nilpotency class 2, íàó÷íà êîíôåðåíöèÿ íà Ðóñåíñêè óíèâåðñèòåò, 9-10 îêòîìâðè 2015. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Äðóãè Äîêëàäè I. Michailov, Unramified cohomology and Noether’s problem, International Workshop Groups and Rings – Theory and Applications (GRiTA2015), 15 – 22 þëè 2015, ÈÌÈ íà ÁÀÍ, Ñîôèÿ. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Äðóãè Äîêëàäè È. Ìèõàéëîâ, "Ïðèëîæåíèå íà êîìïþòúðíàòà ïðîãðàìà GAP çà êëàñèôèêàöèÿ íà ð-ãðóïè îò êëàñ íà íèëïîòåíòíîñò 2" , ñåìèíàð íà ÔÌÈ, 26.05.2015 ã. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, On Galois cohomology and realizability of 2-groups as Galois groups II, Central European Journal of Mathematics, 9 (6) (2011), 1333-1337. PDF SpringerLink. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, On Galois cohomology and realizability of 2-groups as Galois groups, Central European Journal of Mathematics, 9 (2), 2011, p. 403-419. PDF SpringerLink. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ Ñ èìïàêò ôàêòîð Ñòàòèè I. Michailov, The Rationality Problem for three- and four-dimensional permutational group actions, International Journal of Algebra and Computation, Vol. 21, No. 8 (2011) 1317–1337. PDF WorldScientific. 19.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ðåôåðèðàíè èçäàíèÿ Ñòàòèè Í. Íà÷åâ, È. Ìèõàéëîâ, Í. Çÿïêîâ, 200 ãîäèíè îò ðîæäåíèåòî íà Åâàðèñò Ãàëîà, Ìàòåìàòèêà è ìàòåìàòè÷åñêî îáðàçîâàíèå, Áîðîâåö, (2011), 22-30. PDF 18.11.2015
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ  ñáîðíèê Ñòàòèè I. Michailov, I. Ivanov, N. Ziapkov, Noether’s problem for central cyclic extensions of metacyclic p-groups, ñáîðíèê îò íàó÷íè òðóäîâå „40 ãîäèíè Øóìåíñêè óíèâåðñèòåò 1971-2011” , Óíèâåðñèòåòñêî èçäàòåëñòâî “Åïèñêîï Ê. Ïðåñëàâñêè”, Øóìåí, 2011, ñòð. 16-21. 18.11.2015
Ñòðàíèöà2: 1/3,îáùî çàïèñè:126