Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ãîäèøíèê
| Ñòàòèè
| IVO M. MICHAILOV, IVAN S. IVANOV, UNRAMIFIED COHOMOLOGY AND NOETHER’S PROBLEM, Annual of Konstantin Preslavsky University of Shumen vol. XX C, 2019, pp. 3 - 11. |
22.01.2023 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ãîäèøíèê
| Ñòàòèè
| IVO M. MICHAILOV, IVAYLO DIMITROV, IVAN IVANOV, ON ISOCLINISM OF CERTAIN NILPOTENCY CLASS 2 p-GROUPS, Annual of Konstantin Preslavsky University of Shumen vol. XXI C, 2020, pp. 3 - 10. |
19.01.2023 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ãîäèøíèê
| Äîêëàäè
| I. Michailov, I. Ivanov, I. Dimitrov, CLASSIFICATION OF THE p -GROUPS G HAVING A NORMAL ABELIAN SUBGROUP H OF INDEX p SUCH THAT Gp=1, íàó÷íà êîíôåðåíöèÿ íà Ðóñåíñêè óíèâåðñèòåò, 24-26 îêòîìâðè 2019. |
04.10.2022 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ãîäèøíèê
| Ñòàòèè
| I. Michailov, I. Ivanov, I. Dimitrov, CLASSIFICATION OF THE p -GROUPS G HAVING A NORMAL ABELIAN SUBGROUP H OF INDEX p SUCH THAT Gp={1}, Proceedings of University of Ruse, Vol 58, Bulgaria, 2019, ð 10-16. |
04.10.2022 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| Ivo M. Michailov, Ivaylo Dimitrov, Ivan Ivanov, NOETHER’S PROBLEM FOR ABELIAN EXTENSIONS
OF CYCLIC p-GROUPS OF NILPOTENCY CLASS 2, Compt. Rend. de’ l Academie bulgarie des Sciences, 2022, 75, ¹ 3, pp. 323-330, DOI:10.7546/CRABS.2022.03.01. |
04.10.2022 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ãîäèøíèê
| Ñòàòèè
| IVO M. MICHAILOV, IVAYLO DIMITROV, IVAN IVANOV, ON THE EMBEDDING PROBLEM OF CENTRAL CYCLIC
EXTENSIONS OF ABELIAN GROUPS, Annual of Konstantin Preslavsky University of Shumen vol. XXII C, 2021, pp. 13 - 21, https://doi.org/10.46687/ZFTQ1864. |
04.10.2022 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ãîäèøíèê
| Ñòàòèè
| I. Michailov, I. Ivanov, ON p-GROUPS HAVING A NORMALELEMENTARY ABELIAN SUBGROUP OF INDEX p, Annual of Konstantin Preslavsky University of Shumen Faculty of Mathematics and Informatics , vol. XIX C, 2018, pp. 21- 26. |
18.05.2021 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ãîäèøíèê
| Ñòàòèè
| I. Michailov, I. Ivanov, S. Vladimirova, F. Aleksandrova, On bigger primes. Ãîäèøíèê íà ÔÌÈ, òîì XVIII C, ISSN 1311-834X, p. 15-23 (2017). |
08.03.2021 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, Bogomolov multipliers for unitriangular groups, C. R. Acad. Bulg. Sci. 68 ¹ 6 (2015), 689–696. |
09.04.2019 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Âòîðî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Bogomolov multipliers for unitriangular groups, C. R. Acad. Bulg. Sci. 68
(2015), 689–696. Öèòèðàíà â: Jezernik, U., & Moravec, P. (2018). Commutativity preserving extensions of groups. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148(03), 575–592. |
24.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Äðóãè
| Öèòèðàíèÿ
| Òðåòî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Bogomolov multipliers for unitriangular groups, C. R. Acad. Bulg. Sci. 68
(2015), 689–696. Öèòèðàíà â: Jezernik, U.,UNIVERSAL COMMUTATOR RELATIONSð Doctoral thesis, Ljubljana University, 2016. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Ïúðâî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Noether’s problem for some groups of order 16n, Acta Arithmetica, 143, 2010, 277-290. Öèòèðàíà â: SHARIFI, Hesam & Reza DARAFSHEH, Mohammad. (2017). On tetravalent normal edge-transitive Cayley graphs on the modular group. TURKISH JOURNAL OF MATHEMATICS. 41. 1308-1312. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Äðóãè
| Öèòèðàíèÿ
| Âòîðî öèòèðàíå íà ñòàòèÿòà: I.M. Michailov, Noether’s problem for abelian extensions of cyclic p-groups, Pacific J. Math. 270 (2014) 167–189. Öèòèðàíà â: Sergey Gorchinskiy, Constantin Shramov, Unramified Brauer Group and Its Applications (Translations of Mathematical Monographs), Amer Mathematical Society (August 27, 2018). |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Ïúðâî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Induced orthogonal representations of Galois groups, Journal of Algebra, 322, ¹10, 2009, p. 3713-3732.Öèòèðàíà â: Chebolu, S., Minac, J., & Schultz, A. (2016). Galois $p$-groups and Galois modules. Rocky Mountain Journal of Mathematics, 46(5), 1405–1446. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Ïåòî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Four non-abelian groups of order p4 as Galois groups, Journal of Algebra 307, ¹ 1, 2007, 287-299. Öèòèðàíà â: Chebolu, S., Minac, J., & Schultz, A. (2016). Galois $p$-groups and Galois modules. Rocky Mountain Journal of Mathematics, 46(5), 1405–1446. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Âòîðî öèòèðàíå íà ñòàòèÿòà: I. Michailov, N. Ziapkov, On realizability of p-groups as Galois groups, Serdica Mathematical Journal, 37 (2011), 173-210. Öèòèðàíà â: Minac, J., & Tan, N. D. (2017). Construction of unipotent Galois extensions and Massey products. Advances in Mathematics, 304, 1021–1054. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Ïúðâî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Galois realizability of groups of orders p5 and p6, Central European Journal of Mathematics, 11 (5), 2013, p. 910-923. Öèòèðàíà â: Minac, J., & Tan, N. D. (2017). Construction of unipotent Galois extensions and Massey products. Advances in Mathematics, 304, 1021–1054. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| ×åòâúðòî öèòèðàíå íà ñòàòèÿòà: I. Michailov, Four non-abelian groups of order p4 as Galois groups, Journal of Algebra 307, ¹ 1, 2007, 287-299. Öèòèðàíà â: Minac, J., & Tan, N. D. (2017). Construction of unipotent Galois extensions and Massey products. Advances in Mathematics, 304, 1021–1054. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Ïúðâî öèòèðàíå íà ñòàòèÿòà: I.M. Michailov, Noether’s problem for abelian extensions of cyclic p-groups, Pacific J. Math. 270 (2014) 167–189. Öèòèðàíà â: H. Chu, A. Hoshi, S.-J. Hu, M.-C. Kang, Noether’s problem for groups of order 243, Journal of Algebra 442 (2015), 233–259. |
22.11.2018 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Âòîðî öèòèðàíå íà ñòàòèÿòà: M. Kang, I. Michailov, Jian Zhou, Noether’s problem for the groups with a cyclic subgroup of index 4, Transformation groups, 17 (4), 2012, p. 1037-1058. Öèòèðàíà â: A. Hoshi, BIRATIONAL CLASSIFICATION OF FIELDS OF INVARIANTS FOR GROUPS OF ORDER 128, Journal of Algebra, 445 (2016), 394-432. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ñáîðíèê
| Äîêëàäè
| I. Michailov, I. Ivanov, Bogomolov multipliers for some p-groups of nilpotency class 2 with 6 generators, äîêëàä íà íàó÷íà êîíôåðåíöèÿ "ÌÀÒÒÅÕ”, Øóìåíñêè Óíèâåðñèòåò, 2016. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ñáîðíèê
| Ñòàòèè
| È. Ìèõàéëîâ, Í. Çÿïêîâ, Íÿêîè ñâîéñòâà íà àëãåáðèòå íà Ãàëîà, ñâúðçàíè ñúñ çàäà÷èòå çà âëîæèìîñò íà ïîëåòà, Äîêëàäè: Ìàòåìàòèêà è èíôîðìàòèêà: I ÷àñò, Þáèëåéíà íàó÷íà êîíôåðåíöèÿ “25 ãîäèíè ØÓ “Åïèñêîï Ê. Ïðåñëàâñêè”, 1996, ñòð. 29-32.
|
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, N. Ziapkov, Embedding obstructions for the generalized quaternion group , Journal of Algebra 226, ¹ 1, 2000, 375-389. PDF ScienceDirect. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, N. Ziapkov, Attendant embedding problems , C.R. de’ l Academie bulgarie des Sciences, 2000, 53, ¹ 7, 9-12. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, N. Ziapkov, On equivalent embedding problems , C.R. de’ l Academie bulgarie des Sciences, 2000, 53, ¹ 8, 9-12. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, Embedding obstructions for the dihedral, semidihedral and quaternion 2 – groups, Journal of Algebra, 2001, 245 (2001), 355-369. PDF ScienceDirect. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| I. Michailov, N. Ziapkov, Embedding problems with Galois groups of order 16, Mathematica Balkanica, New Series, 15 (2001), Fasc. 1-2, 99-108. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ñáîðíèê
| Ñòàòèè
| È. Ìèõàéëîâ, Í. Çÿïêîâ, Çàäà÷è çà âëîæèìîñò ñ îáîáùåíàòà êâàòåðíèîííà ãðóïà, Äîêëàäè íà Þáèëåéíà íàó÷íà êîíôåðåíöèÿ “30 ãîäèíè ØÓ “Åïèñêîï Ê.Ïðåñëàâñêè”, ÔÌÈ, Øóìåí, 2002, ñòð. 3-7. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| I. Michailov, Some groups of orders 8 and 16 as Galois groups over Q, Mathematica Balkanica, New Series, 17 (2003), Fasc. 1-2, 155-170. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ñáîðíèê
| Ñòàòèè
| È. Ìèõàéëîâ, Í. Çÿïêîâ, Íÿêîè åêâèâàëåíòíè çàäà÷è çà âëîæèìîñò â òåîðèÿòà çà âëîæèìîñò íà ïîëåòà, Ñáîðíèê íàó÷íè òðóäîâå, ïîñâåòåí íà 100 ã. îò ðîæäåíèåòî íà Äæ. Àòàíàñîâ,Øóìåí, 4-5.12., Óíèâåðñèòåòñêî èçäàòåëñòâî “Åï. Ê. Ïðåñëàâñêè”, ò. I, Øóìåí, 2004, ñòð. 78-81. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| I. Michailov, Some groups of orders 8 and 16 as Galois groups over the p-adic number field, Mathematica Balkanica, New Series, 19 (2005), Fasc.3-4, 367-383. PDF |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ñáîðíèê
| Ñòàòèè
| I. Michailov, I. Ivanov, Bogomolov multipliers for some p-groups of nilpotency class 2 with 6 generators, ñáîðíèê îò íàó÷íè òðóäîâå îò íàó÷íà êîíôåðåíöèÿ "ÌÀÒÒÅÕ”, Øóìåíñêè Óíèâåðñèòåò, 2016, p. 31-35. |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, Bogomolov multipliers for some p-groups of nilpotency class 2, Acta Mathematica Sinica, English Series, May 2016, Volume 32, Issue 5, pp 541-552 |
25.11.2016 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ðåôåðèðàíè èçäàíèÿ
| Ñòàòèè
| I. Michailov, Quaternion extensions of order 16, Serdica Mathematical Journal, 31, ¹ 3, 2005, 217-228. PDF |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, Four non-abelian groups of order p4 as Galois groups, Journal of Algebra 307, ¹ 1, 2007, 287-299. PDF ScienceDirect. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ðåôåðèðàíè èçäàíèÿ
| Ñòàòèè
| I. Michailov, Groups of order 32 as Galois groups, Serdica Mathematical Journal, 34, ¹ 1, 2007, p. 1-34. PDF |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ðåôåðèðàíè èçäàíèÿ
| Ñòàòèè
| I. Michailov, Embedding obstructions for the modular and cyclic 2-groups, Mathematica Balkanica, New Series, 21 (2007), Fasc. 1-2, 31-50. PDF |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ðåôåðèðàíè èçäàíèÿ
| Ñòàòèè
| I. Michailov, N. Ziapkov, The Inverse Problem Of Galois Theory, Proceedings of the 37th spring conference of the Union of Bulgarian Mathematicians in Borovets, 2008, 17-28.PDF |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, Induced orthogonal representations of Galois groups, Journal of Algebra, 322, ¹10, 2009, p. 3713-3732.PDF ScienceDirect. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, Exact sequences in the theory of orthogonal representations of groups, Compt. Rend. de’ l Academie bulgarie des Sciences, 2009, 62, ¹ 9, pp. 1057-1062. PDF |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, Noether’s problem for some groups of order 16n, Acta Arithmetica, 143, 2010, 277-290. PDF Impan. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Äðóãè
| Äîêëàäè
| I. Michailov, I. Ivanov, A. Aleksandrova, G. Ilianova, Algorithmic determination of isoclinism for 6-generator groups of nilpotency class 2, íàó÷íà êîíôåðåíöèÿ íà Ðóñåíñêè óíèâåðñèòåò, 9-10 îêòîìâðè 2015. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Äðóãè
| Äîêëàäè
| I. Michailov, I. Ivanov, N. Ziapkov, Algorithmic generation of isoclinism classes for 4-generator groups of nilpotency class 2, íàó÷íà êîíôåðåíöèÿ íà Ðóñåíñêè óíèâåðñèòåò, 9-10 îêòîìâðè 2015. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Äðóãè
| Äîêëàäè
| I. Michailov, Unramified cohomology and Noether’s problem, International Workshop Groups and Rings – Theory and Applications (GRiTA2015), 15 – 22 þëè 2015, ÈÌÈ íà ÁÀÍ, Ñîôèÿ.
|
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Äðóãè
| Äîêëàäè
| È. Ìèõàéëîâ, "Ïðèëîæåíèå íà êîìïþòúðíàòà ïðîãðàìà GAP çà êëàñèôèêàöèÿ íà ð-ãðóïè îò êëàñ íà íèëïîòåíòíîñò 2" , ñåìèíàð íà ÔÌÈ, 26.05.2015 ã. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, On Galois cohomology and realizability of 2-groups as Galois groups II, Central European Journal of Mathematics, 9 (6) (2011), 1333-1337. PDF SpringerLink. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, On Galois cohomology and realizability of 2-groups as Galois groups, Central European Journal of Mathematics, 9 (2), 2011, p. 403-419. PDF SpringerLink. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| I. Michailov, The Rationality Problem for three- and four-dimensional permutational group actions, International Journal of Algebra and Computation, Vol. 21, No. 8 (2011) 1317–1337. PDF WorldScientific. |
19.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ðåôåðèðàíè èçäàíèÿ
| Ñòàòèè
| Í. Íà÷åâ, È. Ìèõàéëîâ, Í. Çÿïêîâ, 200 ãîäèíè îò ðîæäåíèåòî íà Åâàðèñò Ãàëîà, Ìàòåìàòèêà è ìàòåìàòè÷åñêî îáðàçîâàíèå, Áîðîâåö, (2011), 22-30. PDF |
18.11.2015 |
Ïðîô. ä.ì.í. Èâî Ìèõàéëîâ Ìèõàéëîâ
|
 ñáîðíèê
| Ñòàòèè
| I. Michailov, I. Ivanov, N. Ziapkov, Noether’s problem for central cyclic extensions of metacyclic p-groups, ñáîðíèê îò íàó÷íè òðóäîâå „40 ãîäèíè Øóìåíñêè óíèâåðñèòåò 1971-2011” , Óíèâåðñèòåòñêî èçäàòåëñòâî “Åïèñêîï Ê. Ïðåñëàâñêè”, Øóìåí, 2011, ñòð. 16-21. |
18.11.2015 |