Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| G. Nedzhibov, A variant of second order dynamic mode decomposition. AIP Conf. Proc. 31 March 2025; 3182 (1): 090002. https://doi.org/10.1063/5.0245980 |
05.04.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| Nedzhibov, G. Dynamic Mode Decomposition via Polynomial Root-Finding Methods. Mathematics 2025, 13, 709. https://doi.org/10.3390/math13050709 (WoS, Scopus) |
07.03.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| G. Nedzhibov, “An improved approach for implementing dynamic
mode decomposition with control,” Computation, vol. 11, no. 10, 2023.
https://www.mdpi.com/2079-3197/11/10/201 ÖÈÒÈÐÀÍÀ Â: Wu, X.; Du, Y. Unsteady Flow Field Analysis of a Compressor Cascade Based on Dynamic Mode Decomposition. Aerospace 2024, 11, 1019. https://doi.org/10.3390/aerospace11121019 (SCOPUS) |
05.02.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G.H., DYNAMIC MODE DECOMPOSITION: A NEW APPROACH FOR COMPUTING THE DMD MODES AND EIGENVALUES, Ann. Acad. Rom. Sci. Ser. Math. Appl., Vol. 14, No. 1-2/2022; ÖÈÒÈÐÀÍÀ Â: Akshaya, J., Ghaayathri Devi, K., Likhitha, K., Gokul, R., Sachin Kumar, S., Understanding the Dynamics of the Evolution of Weights in Neural Networks using Dynamic Mode Decomposition Approach, Proceedings - 3rd International Conference on Advances in Computing, Communication and Applied Informatics, ACCAI 2024. DOI: 10.1109/ACCAI61061.2024.10601900
https://ieeexplore.ieee.org/document/10601900 (SCOPUS) |
05.02.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G. On Alternative Algorithms for Computing Dynamic Mode Decomposition. Computation 2022, 10, 210. https://doi.org/10.3390/computation10120210 ÖÈÒÈÐÀÍÀ Â: Ning, J., Huang, Y., Tang, Z., Wang, J., Wu, G., Model Predictive Control-Based Frequency Control with Recursively Estimated System Model for Microgrids, Dianli Jianshe/Electric Power Construction, 45(7), pp. 68-75, 2024
ISSN 10007229; DOI: 10.12204/j.issn.1000-7229.2024.07.006 (SCOPUS)
https://www.scopus.com/record/display.uri?eid=2-s2.0-85200979910&origin=resultslist&sort=plf-f&cite=2-s2.0-85144680463&src=s&imp=t&sid=0272c1e873a6051b99c9315bf769bfbb&sot=cite&sdt=a&sl=0&relpos=0&citeCnt=0&searchTerm=
|
05.02.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G. On Alternative Algorithms for Computing Dynamic Mode Decomposition. Computation 2022, 10, 210. https://doi.org/10.3390/computation10120210 ÖÈÒÈÐÀÍÀ Â: Thien-Tam Nguyen, Davina Kasperski, Phat Kim Huynh, Trung Quoc Le, Trung Bao Le, Modal analysis of blood flows in saccular aneurysms. Physics of Fluids 37 (1), 011906 (2025). DOI: 10.1063/5.0243383 (SCOPUS) |
05.02.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 ñáîðíèê
| Öèòèðàíèÿ
| G. Nedzhibov, “An improved approach for implementing dynamic
mode decomposition with control,” Computation, vol. 11, no. 10, 2023.
https://www.mdpi.com/2079-3197/11/10/201 ÖÈÒÈÐÀÍÀ Â: Carlos Osorio Quero and Jose Martinez-Carranza, Physics-Informed Machine Learning
for UAV Control, 21th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2024.
DOI: 10.1109/CCE62852.2024.10770871 (SCOPUS) |
05.02.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G. Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition. Mathematics 2024, 12, 762. https://doi.org/10.3390/math12050762 ÖÈÒÈÐÀÍÀ Â: Cheng, L.; de Groot, J.; Xie, K.; Si, Y.; Han, X. Camera-Based Dynamic Vibration Analysis Using Transformer-Based Model CoTracker and Dynamic Mode Decomposition. Sensors 2024, 24, 3541. https://doi.org/10.3390/s24113541 (SCOPUS) |
05.02.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| Nedzhibov, G. Blind Source Separation Using Time-Delayed Dynamic Mode Decomposition. Computation 2025, 13, 31, pp. 1-25. ISSN: 2079-3197, https://doi.org/10.3390/computation13020031 (WoS, Scopus) |
02.02.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Äðóãè
| Ó÷åáíèöè
| Âúâåäåíèå â ìàòåìàòè÷åñêîòî ìîäåëèðàíå ñ ÷èñëåíè ìåòîäè, Óíèâåðñèòåòñêî èçäàòåëñòâî \"Åïèñêîï Êîíñòàíòèí Ïðåñëàâñêè\", Âòîðî, ïðåðàáîòåíî è äîïúëíåíî èçäàíèå, 2025, ISBN: 978-619-201-815-3 |
31.01.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Äðóãè
| Ó÷åáíèöè
| Âúâåäåíèå â OCTAVE, Óíèâåðñèòåòñêî èçäàòåëñòâî \"Åïèñêîï Êîíñòàíòèí Ïðåñëàâñêè\", 2025, ISBN: 978-619-201-817-7 |
31.01.2025 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| G. Nedzhibov, Local convergence of the inverse Weierstrass method for simultaneous approximation of polynomial zeros, International Journal of Mathematical Analysis, Vol. 10, 2016, no. 26, 1295-1304. https://doi.org/10.12988/ijma.2016.69110 ÖÈÒÈÐÀÍÀ Â: Shams, M.; Carpentieri, B. Computational Analysis of Parallel Techniques for Nonlinear Biomedical Engineering Problems. Algorithms 2024, 17, 575. https://doi.org/10.3390/a17120575 |
26.12.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| Nedzhibov, G., ON HIGHER ORDER DYNAMIC MODE DECOMPOSITION, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 16, No. 2/2024; ISSN ONLINE 2066 – 6594. DOI https://doi.org/10.56082/annalsarscimath.2024.2.265 (Scopus, SJR 0.354) |
07.12.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 ñáîðíèê
| Ñòàòèè
| Gyurhan H. Nedzhibov, ON AUGMENTED SPATIO-TEMPORAL DYNAMIC MODE DECOMPOSITION, MATTEX 2024, Conference proceedings, Vol. 1, pp. 41– 52, (2024), ISSN - 1314-3921, DOI: https://doi.org/10.46687/UXEN1854 |
07.12.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| G. Nedzhibov, Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition. Mathematics. 2024; 12(5):762. https://doi.org/10.3390/math12050762 (WoS, Scopus) |
07.12.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| Nedzhibov, G., ONLINE DYNAMIC MODE DECOMPOSITION: AN ALTERNATIVE APPROACH FOR LOW RANK DATASETS, Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 15, No. 1-2/2023; DOI https://doi.org/10.56082/annalsarscimath.2023.1-2.229 (Scopus, SJR 0.354) |
07.12.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Nedzhibov, G.H., DYNAMIC MODE DECOMPOSITION: A NEW APPROACH FOR COMPUTING THE DMD MODES AND EIGENVALUES, Ann. Acad. Rom. Sci. Ser. Math. Appl., Vol. 14, No. 1-2/2022; ÖÈÒÈÐÀÍÀ Â: Amanda Marti Coll, Adrian Rodriguez Ramos, Orestes Llanes-Santiago, RIELAC, Seleccion optima de observadores de Koopman aplicados a DMDc en la obtencion de gemelos digitales, Vol. 45(2):e2403(2024) ISSN: 1815-5928
https://rielac.cujae.edu.cu/index.php/rieac/article/view/960 |
24.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| V. I. Hasanov, I. G. Ivanov and G. Nedzhibov, A new modification of Newtons method, Appl. Math. Eng., vol. 27, pp. 278-286, Jan. 2002. ÖÈÒÈÐÀÍÀ Â: Yongkun Liu, Tengfei Long, Weili Jiao, Yihong Du, Guojin He, Zhaoming Zhang, Single Satellite Image Sharpening With Any-Angle 2-D MTF Estimation, IEEE Transactions on Geoscien,Volume 62, 5641616, 10.1109/TGRS.2024.3457906 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G.H.: An approach to accelerate iterative methods for solving nonlinear operator equations. In: Applications of Mathematics in Engineering and Economics (AMEE’11). AIP Conf. Proc., vol. 1410, pp. 76–82. Amer. Inst. Phys., Melville (2011) ÖÈÒÈÐÀÍÀ Â: Zhao, M., Lai, Z. & Lim, LH. Stochastic Steffensen method. Comput Optim Appl 89, 1–32 (2024). https://doi.org/10.1007/s10589-024-00583-7 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| J. Pavlina and G. Nedzhibov, IPO and IPO-NM estimators in exponentiated Frechet case, AIP Conf. Proc. 2333(open in a new window) (2021), pp. 150001-1–150001-9. doi:10.1063/5.0044136AIP Publishing LLC. ÖÈÒÈÐÀÍÀ Â: Girish Aradhye, Deepesh Bhati &George Tzougas, A novel M-Lognormal–Burr regression model with varying threshold for modeling heavy-tailed claim severity data, Journal of Applied Statistics,
Volume 51, 2024 - Issue 14, Pages 2832-2850. https://doi.org/10.1080/02664763.2024.2319232
|
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Stoyanov B, Nedzhibov G (2020) Symmetric key encryption based on rotation-translation equation, MDPI 73, https://doi.org/10.3390/sym12010073 ÖÈÒÈÐÀÍÀ Â: Amina, Y., Bekkouche, T., Daachi, M.E.H. et al. A novel trigonometric 3D chaotic map and its application in a double permutation-diffusion image encryption. Multimed Tools Appl 83, 7895–7918 (2024). https://doi.org/10.1007/s11042-023-15858-0 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov G.H., A family of multi-point iterative methods for solving systems of nonlinear equations
J. Comput. Appl. Math., 222 (2) (2008), pp. 244-250 ÖÈÒÈÐÀÍÀ Â: Alicia Cordero, Miguel A. Leonardo-Sepulveda, Juan R. Torregrosa, Maria P. Vassileva, Increasing in three units the order of convergence of iterative methods for solving nonlinear systems, Mathematics and Computers in Simulation, Volume 223, 2024, Pages 509-522, ISSN 0378-4754,
https://doi.org/10.1016/j.matcom.2024.05.001 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G.H.: Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros. Commun. Numer. Anal., 74–80 (2016) ÖÈÒÈÐÀÍÀ Â: Ivanov, S.I. Families of high-order simultaneous methods with several corrections. Numer Algor 97, 945–958 (2024). https://doi.org/10.1007/s11075-023-01734-3 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G.H.; Petkov, M.G. On a family of iterative methods for simultaneous extraction of all roots of algebric polynomial. Appl. Math. Comput. 2005, 162, 427–433. ÖÈÒÈÐÀÍÀ Â: Shams, M.; Carpentieri, B. Q-Analogues of Parallel Numerical Scheme Based on Neural Networks and Their Engineering Applications. Appl. Sci. 2024, 14, 1540. https://doi.org/10.3390/app14041540 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Bulgaria, 16–17 October 2018; Volume 1, pp. 66–73. ÖÈÒÈÐÀÍÀ Â: Shams, M.; Carpentieri, B. Q-Analogues of Parallel Numerical Scheme Based on Neural Networks and Their Engineering Applications. Appl. Sci. 2024, 14, 1540. https://doi.org/10.3390/app14041540 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Stoyanov B, Nedzhibov G (2020) Symmetric key encryption based on rotation-translation equation. Symmetry 12(1):73. https://doi.org/10.3390/sym12010073 ÖÈÒÈÐÀÍÀ Â: Das, R., Khan, A., Arya, R. et al. SSKA: secure symmetric encryption exploiting Kuznyechik algorithm for trustworthy communication. Int J Syst Assur Eng Manag 15, 2391–2400 (2024). https://doi.org/10.1007/s13198-024-02253-7 |
05.11.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Ñòàòèè
| G.H. Nedzhibov, M.G. Petkov, On Analitic Iterative Functions for Solving Nonlinear Equations and Systems of Equations, In: Numerical Analysis and Application, LNCS, SpringerVerlag, Berlin Heidelberg, pp 432–439 (2005). (Scopus) https://doi.org/10.1007/978-3-540-31852-1_52 |
06.04.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 ðåôåðèðàíè èçäàíèÿ
| Ñòàòèè
| Gyurhan H. Nedzhibov, Some new properties of the Weierstrass iterative method, AIP Conf. Proc. 2505, 080002 (2022) https://doi.org/10.1063/5.0100882 |
05.04.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, October 2018; Vol.1, p.66–73. ÖÈÒÈÐÀÍÀ Â: Shams, M., Kausar, N., Araci, S., Kong, L., & Carpentieri, B. (2024). Highly Efficient Family of Two-Step Simultaneous Method for All Polynomial Roots. AIMS Mathematics, 9(1), 1755–1771. https://doi.org/10.3934/math.2024085 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, October 2018; Vol.1, p.66–73. ÖÈÒÈÐÀÍÀ Â: Shams, M.; Carpentieri, B. Efficient Inverse Fractional Neural Network-Based Simultaneous Schemes for Nonlinear Engineering Applications. Fractal Fract. 2023, 7, 849. https://doi.org/10.3390/fractalfract7120849 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Äðóãè
| Öèòèðàíèÿ
| Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, October 2018; Vol.1, p.66–73. ÖÈÒÈÐÀÍÀ Â: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis
https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
|
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Äðóãè
| Öèòèðàíèÿ
| Nedzhibov, G.H. New local convergence theorems for the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2018, 10, 266–279. ÖÈÒÈÐÀÍÀ Â: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis
https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
|
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G.H. On semilocal convergence analysis of the Inverse Weierstrass method for simultaneous computing of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019, 11, 247–258. ÖÈÒÈÐÀÍÀ Â: Shams, M.; Carpentieri, B. Efficient Inverse Fractional Neural Network-Based Simultaneous Schemes for Nonlinear Engineering Applications. Fractal Fract. 2023, 7, 849. https://doi.org/10.3390/fractalfract7120849 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Äðóãè
| Öèòèðàíèÿ
| Nedzhibov, G.H. On semilocal convergence analysis of the Inverse Weierstrass method for simultaneous computing of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019, 11, 247–258. ÖÈÒÈÐÀÍÀ Â: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis
https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
|
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Äðóãè
| Öèòèðàíèÿ
| Nedzhibov, G.H. Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros. Commun. Numer. Anal. 2016, 2016, 74–80. ÖÈÒÈÐÀÍÀ Â: P.I.MARCHEVA, Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros, University of Plovdiv ‘Paisii Hilendarski’ Faculty of Mathematics and Informatics, 2023 – PhD thesis
https://procedures.uni-plovdiv.bg/docs/procedure/2641/19750933051099104071.pdf
|
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| G. Nedzhibov and M.G. Petkov, On a family of iterative methods for simultaneous extraction of all roots of algebraic polynomial, Applied Mathematics & Computation, Mar 2005, Vol. 162 Issue 1, p427-433, 7p ÖÈÒÈÐÀÍÀ Â: Rezaiee-Pajand, M., Arabshahi, A., Gharaei-Moghaddam, N. Evaluation of iterative methods for solving nonlinear scalar equations. Iranian Journal of Numerical Analysis and Optimization, 2023; 13(3): 426-443. doi: 10.22067/ijnao.2022.75865.1118 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Nedzhibov, G.H., Hasanov, V.I. & Petkov, M.G. On some families of multi-point iterative methods for solving nonlinear equations. Numer Algor 42, 127–136 (2006). https://doi.org/10.1007/s11075-006-9027-5 ÖÈÒÈÐÀÍÀ Â: Raziyeh Erfanifar, Masoud Hajarian, Weight splitting iteration methods to solve quadratic nonlinear matrix equation MY2+NY+P=0, Journal of the Franklin Institute, Volume 360, Issue 3, 2023, Pages 1904-1928, ISSN 0016-0032, https://doi.org/10.1016/j.jfranklin.2022.12.005. |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Nedzhibov, G.H., Hasanov, V.I. & Petkov, M.G. On some families of multi-point iterative methods for solving nonlinear equations. Numer Algor 42, 127–136 (2006). https://doi.org/10.1007/s11075-006-9027-5 ÖÈÒÈÐÀÍÀ Â: Raziyeh Erfanifar, Masoud Hajarian, Developing HSS iteration schemes for solving the quadratic matrix equation, IET Control Theory & Applications, 2023, https://doi.org/10.1049/cth2.12585 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| G.H. Nedzhibov, On a few Iterative methods for Solving Nonlinear Equations, In: Applications of mathematics in engineering and economics, Bulvest-2000, Sofia, (2003), pp. 56–64 ÖÈÒÈÐÀÍÀ Â: Ramzan, S.; Awan, M.U.; Dragomir, S.S.; Bin-Mohsin, B.; Noor, M.A. Analysis and Applications of Some New Fractional Integral Inequalities. Fractal Fract. 2023, 7, 797. https://doi.org/10.3390/fractalfract7110797 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ÖÈÒÈÐÀÍÀ Â: Shams, M., Kausar, N., Araci, S., Kong, L., & Carpentieri, B. (2024). Highly Efficient Family of Two-Step Simultaneous Method for All Polynomial Roots. AIMS Mathematics, 9(1), 1755–1771. https://doi.org/10.3934/math.2024085 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ÖÈÒÈÐÀÍÀ Â: Mudassir Shams , Nasreen Kausar , Serkan Araci and Georgia Irina Oros, Numerical scheme for estimating all roots of non-linear equations with applications, AIMS Mathematics, 8(10): 23603–23620, DOI: 10.3934/math.20231200 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Nedzhibov, G., Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90(5), pp.994-1007, (2013) ÖÈÒÈÐÀÍÀ Â: Shams, M.; Carpentieri, B. On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models. Mathematics 2023, 11, 4914. https://doi.org/10.3390/math11244914 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Öèòèðàíà â: B Kaushik, V Malik, V Saroha, A Review Paper on Data Encryption and Decryption, International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; Apr 2023, https://doi.org/10.22214/ijraset.2023.50101. |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Öèòèðàíà â: Fursan Thabit, Ozgu Can, Asia Othman Aljahdali, Ghaleb H. Al-Gaphari, Hoda A. Alkhzaimi, Cryptography Algorithms for Enhancing IoT Security, Internet of Things, Volume 22, 2023, https://doi.org/10.1016/j.iot.2023.100759. |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Öèòèðàíà â: Fursan Thabit, Ozgu Can, Asia Othman Aljahdali, Ghaleb H. Al-Gaphari, Hoda A. Alkhzaimi, Cryptography Algorithms for Enhancing IoT Security, Internet of Things, Volume 22, 2023, https://doi.org/10.1016/j.iot.2023.100759. |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Öèòèðàíà â: K. R. Ramkumar, T. Hasija, B. Singh, A. Kaur and S. K. Mittal, \"Key Generation using Curve Fitting for Polynomial based Cryptography,\" 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2023, pp. 591-596, doi: 10.1109/ICOEI56765.2023.10125901. |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Öèòèðàíà â: T. Hasija, K. R. Ramkumar, B. Singh, A. Kaur and S. K. Mittal, \"A new Polynomial based Symmetric Key Algorithm using Polynomial Interpolation Methods,\" 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 2023, pp. 675-681, doi: 10.1109/CSNT57126.2023.10134686. |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| Borislav Stoyanov and Gyurhan Nedzhibov, Symmetric Key Encryption Based on Rotation-Translation Equation, Symmetry 2020, 12(1), 73. https://doi.org/10.3390/sym12010073 Öèòèðàíà â: S. Liu, Y. Li and Z. Jin, \"Research on Enhanced AES Algorithm Based on Key Operations,\" 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 2023, pp. 318-322, doi: 10.1109/ICCASIT58768.2023.10351719. |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
 íàó÷íî ñïèñàíèå
| Öèòèðàíèÿ
| V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ÖÈÒÈÐÀÍÀ Â: Supriadi Putra, M Imran, Ayunda Putri, Rike Marjulisa, Variant of Trapezoidal-Newton Method for Solving Nonlinear Equations and its Dynamics, IJQRM, Vol 4, No 4 (2023). DOI: https://doi.org/10.46336/ijqrm.v4i4.539 |
27.01.2024 |
Äîö. ä-ð Ãþðõàí Õþñåèíîâ Íåäæèáîâ
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| V.I. Hasanov, I.G. Ivanov, G. Nedzhibov, A New Modification of Newton’s Method, Appl. Math. Eng., 27 (2002) 278-286 ÖÈÒÈÐÀÍÀ Â: Buddhi Prasad Sapkota, Jivandhar Jnawali, New Variants of Newton’s Method for Solving Nonlinear Equations. (2023). European Journal of Pure and Applied Mathematics, 16(4), 2419-2430. https://doi.org/10.29020/nybg.ejpam.v16i4.4951 |
27.01.2024 |