Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians, E. Horozov and A. Mihajlova // Nonlinearity, 23 (2010), pp. 3053-3069 å öèòèðàíà â On the number of zeros of Abelian integral for a class of cubic Hamiltonian systems
J Yang - Dynamical Systems, 2019 - Taylor & Francis |
23.06.2021 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians, E.Horozov and A. Mihajlova // Nonlinearity, 23 (2010), pp. 3053-3069 å öèòèðàíà â On the Number of Zeros of Abelian Integral for a Class of Cubic Hamilton Systems with the Phase Portrait “Butterfly”
J Yang, S Sui, L Zhao - Qualitative Theory of Dynamical Systems, 2019 - Springer |
23.06.2021 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians, E. Horozov and A. Mihajlova // Nonlinearity, 23 (2010), pp. 3053-3069 å öèòèðàíà â On the Algebraic Structure and the Number of Zeros of Abelian Integral for a Class of Hamiltonians with Degenerate Singularities
J Yang - Bulletin of the Brazilian Mathematical Society, New …, 2018 - Springer |
23.06.2021 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians, E. Horozov and A. Mihajlova // Nonlinearity, 23 (2010), pp. 3053-3069 å öèòèðàíà â The cyclicity of period annuli for a class of cubic Hamiltonian systems with nilpotent singular points
J Yang, L Zhao - Journal of Differential Equations, 2017 - Elsevier |
23.06.2021 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
Ñ èìïàêò ôàêòîð
| Öèòèðàíèÿ
| An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians, E. Horozov and A. Mihajlova, Nonlinearity 23 (2010), pp. 3053-3069 e öèòèðàíà â Zeros of Abelian integrals for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle
J Yang, L Zhao - Nonlinear Analysis: Real World Applications, 2016 - Elsevier |
23.06.2021 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ãîäèøíèê
| Ñòàòèè
| Îöåíêà íà áðîÿ íà íóëèòå íà åäíà ìíîãîçíà÷íà ôóíêöèÿ,÷àñò I-âà.// Ãîäèøíèê íà Øóìåíñêèÿ óíèâåðñèòåò, Ôàêóëòåò ïî ìàòåìàòèêà è èíôîðìàòèêà, òîì XIX C, 2018 ã., ñòð. 129-148. ISSN 1311-834 X. |
11.04.2019 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ñáîðíèê
| Ñòàòèè
| Åäíî íåðàâåíñòâî çà Àáåëåâ èíòåãðàë // MATTEX 2014, Ñáîðíèê íàó÷íè òðóäîâå, òîì 1 (2014), ñòð.91-97. |
26.11.2014 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ñáîðíèê
| Ñòàòèè
| Âúðõó åäèí Àáåëåâ èíòåãðàë // MATTEX 2012, Ñáîðíèê íàó÷íè òðóäîâå, òîì 1 (2012), ñòð.108-114 |
04.11.2014 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| Îáù âèä íà íÿêîè Ëîðåíö-èíâàðèàíòíè äèôåðåíöèàëíè ìíîãîîáðàçèÿ. // Ìàòåìàòèêà è ìàòåìàòè÷åñêî îáðàçîâàíèå, 1985, ñ. 263-268 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ãîäèøíèê
| Ñòàòèè
| An estimate of the period of the periodical solution of the autonomous system of differential equations. // Annuaire Univ. Sofia Fac. Math. Inf., 1 , Tome 91, 1997, pp 107 –114. (Â ñúàâò. ñ Í. Ãåîðãèåâ) |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ñáîðíèê
| Ñòàòèè
| Âúðõó åäíà ñèñòåìà äèôåðåíöèàëíè óðàâíåíèÿ îò òðåòè ðåä. // Íàó÷íè òðóäîâå - Ñáîðíèê îò Þáèëåéíàòà íàó÷íà ñåñèÿ ñ ìåæäóíàðîäíî ó÷àñòèå íà ÂÂÎÂÓ “Â.Ëåâñêè”, Â. Òúðíîâî, êí. 65, , ñòð. 29-36. ( ñúàâò. ñ Í. Ãåîðãèåâ) |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ãîäèøíèê
| Ñòàòèè
| Èçñëåäâàíå íà íÿêîè àáåëåâè èíòåãðàëè â îêîëíîñò íà êðàéíèòå èì îñîáåíè òî÷êè. // Ãîäèøíèê íà ØÓ “Åï. Ê. Ïðåñëàâñêè”, ÔÌÈ, òîì XV C, 2002, ñ. 204-217 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ãîäèøíèê
| Ñòàòèè
| Èçâîä íà åäíà ñèñòåìà íà Ïèêàð-Ôóêñ çà àáåëåâè èíòåãðàëè. // Ãîäèøíèê íà ØÓ “Åï. Ê. Ïðåñëàâñêè”, ÔÌÈ, òîì XV C, 2002, ñ. 194-204 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
Äðóãè
| Ñòàòèè
| Êîìïþòúðíà ïðîãðàìà íà ñèñòåìàòà “Mathematica” çà íàìèðàíå ïðèáëèæåíè ðåøåíèÿ íà ñèñòåìè ëèíåéíè îáèêíîâåíè äèôåðåíöèàëíè óðàâíåíèÿ îò ïúðâè ðåä ñàíàëèòè÷íè êîåôèöèåíòè. Èçîáðàçÿâàíå äâèæåíèåòî ïî îðáèòèòå íà ðåøåíèÿòà. // Êîìïþòúðíè ñèñòåìè è èíôîðìàöèîííè òåõíîëîãèè, Âåëèêî Òúðíîâî, , ñòð. 71-78 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ñáîðíèê
| Ñòàòèè
| Èçñëåäâàíå íà íÿêîè àáåëåâè èíòåãðàëè âúðõó åäíî – öèêëè îò ðèìàíîâàòà ïîâúðõíèíà â îêîëíîñò íà áåçêðàéíàòà òî÷êà ïîñðåäñòâîì ñèñòåìà íà Ïèêàð – Ôóêñ.//Ñáîðíèê íàó÷íè òðóäîâå, ïîñâåòåí íà 100 ã. îò ðîæäåíèåòî íà Äæ. Àòàíàñîâ, Øóìåí, 4-5.12., Óíèâåðñèòåòñêî èçäàòåëñòâî “Åï. Ê. Ïðåñëàâñêè”, ò. I, Øóìåí, 2004, ñòð. 82-88 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 íàó÷íî ñïèñàíèå
| Ñòàòèè
| Estimate for the number of zeros of Abelian integral on elliptic curves. // Serdica, Math. J. 30 (2004),pp 1-16 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ñáîðíèê
| Ñòàòèè
| A Picard-Fuchs system for Abelian integrals, deduced by means of the package “Mathematica”. Part II .// Applications of Mathematics in Engineering and Economics” `31,2006, pp. 197-208 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ñáîðíèê
| Ñòàòèè
| A Picard-Fuchs system for Abelian integrals, deduced by means of the package “Mathematica”. Part I // Applications of Mathematics in Engineering and Economics’31 2006,pp. 188-196 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
 ñáîðíèê
| Ñòàòèè
| A result concerning the behaviour of basic Abelian integrals near to the infinite point // Applications of Mathematics in Engineering and Economics’32 ,2007, pp. 30 - 38 |
04.06.2013 |
Ãë. àñ. ä-ð Àíà Äèìèòðîâà Ìèõàéëîâà
|
Äðóãè
| Ñòàòèè
| An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians // Nonlinearity, 23 (2010), pp. 3053-3069. (Â ñúàâò. ñ Åìèë Õîðîçîâ) |
04.06.2013 |